In Praise of Generalized Coordinates

I've been expressing my enthusiasm for a holistic approach to the understanding of nature -- in relation to my favorite topic, the electromagnetic field, this takes the form of the Lagrangian equations for the field as a single, connected system characterized by its energy, not by forces.  It was crucial to Maxwell's development of the equations of the field in his "Treatise on Electricity and Magnetism" that they be formulated as instances of such a connected system -- i.e., in Lagrangian terms, and NOT on the basis of Newton's laws of motion.  (The difference -- very fundamental to our understanding of nature -- is developed in "The Dialectical Laboratory", in my "Lectures" menu.) Now, the question arises: "If we start in this way, from the 'top down', how do we ever arrive at the elements?"   The answer is, "We DON'T!" We move logically "downward" by finding the dependence of the energy of the whole system upon ANY set of measurements we want to make -- provided only that it's a complete (i.e. sufficient to determine the state of the system), with each measure "independent" of the others. We find such a set of measurements by doing experiments -- and when we get them, they are called "generalized coordinates".  The important thing is that there may be many ways we can define them, each set as good as the others: and in the whole process we never get any"real,underlying elements" -- we don't need them!  Reality is founded at the top, not the bottom, of the chain of explanation.   This is Maxwell's new view of physical reality, founded upon the field.  It is the opposite of the notion of "mechanical explanation", and it is the direction which our approach to nature desperately needs to take as we approach the challenges which lie before us today.  In terms of the philosophy of science, Maxwell it seems was far ahead of his time.  I propose to call this the "Maxwellian Revolution".